Inelastic Character of Solitons of Slowly Varying gKdV Equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refined asymptotics around solitons for gKdV equations

with general C nonlinearity f . Under an explicit condition on f and c > 0, there exists a solution in the energy space H of (0.1) of the type u(t, x) = Qc(x − x0 − ct), called soliton. Stability theory for Qc is well-known. In [11], [14], we have proved that for f(u) = u, p = 2, 3, 4, the family of solitons is asymptotically stable in some local sense in H, i.e. if u(t) is close to Qc (for all...

متن کامل

Asymptotic stability of solitons of the gKdV equations with general nonlinearity

with general C nonlinearity f . Under an explicit condition on f and c > 0, there exists a solution in the energy space H of (0.1) of the type u(t, x) = Qc(x − x0 − ct), called soliton. In this paper, under general assumptions on f and Qc, we prove that the family of soliton solutions around Qc is asymptotically stable in some local sense in H , i.e. if u(t) is close to Qc (for all t ≥ 0), then...

متن کامل

Construction and characterization of solutions converging to solitons for supercritical gKdV equations

We consider the generalized Korteweg-de Vries equation ∂tu + ∂ 3 xu + ∂x(u ) = 0, (t, x) ∈ R2, in the supercritical case p > 5, and we are interested in solutions which converge to a soliton in large time in H. In the subcritical case (p < 5), such solutions are forced to be exactly solitons by variational characterization [1, 19], but no such result exists in the supercritical case. In this pa...

متن کامل

On the Inelastic 2-soliton Collision for Gkdv Equations with General Nonlinearity

We study the problem of 2-soliton collision for the generalized Korteweg-de Vries equations, completing some recent works of Y. Martel and F. Merle [22, 23]. We classify the nonlinearities for which collisions are elastic or inelastic. Our main result states that in the case of small solitons, with one soliton smaller than the other one, the unique nonlinearities allowing a perfectly elastic co...

متن کامل

Dynamics of Kdv Solitons in the Presence of a Slowly Varying Potential

We study the dynamics of solitons as solutions to the perturbed KdV (pKdV) equation ∂tu = −∂x(∂ xu + 3u − bu), where b(x, t) = b0(hx, ht), h 1 is a slowly varying, but not small, potential. We obtain an explicit description of the trajectory of the soliton parameters of scale and position on the dynamically relevant time scale δh−1 log h−1, together with an estimate on the error of size h. In a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2012

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-012-1463-6